Extracting elite pairwise constraints for clustering

نویسندگان

  • He Jiang
  • Zhilei Ren
  • Jifeng Xuan
  • Xindong Wu
چکیده

Semi-supervised clustering under pairwise constraints (i.e. must-links and cannot-links) has been a hot topic in the data mining community in recent years. Since pairwise constraints provided by distinct domain experts may conflict with each other, a lot of research work has been conducted to evaluate the effects of noise imposing on semi-supervised clustering. In this paper, we introduce elite pairwise traditional constraints, both EML and ECL constraints are required to be satisfied in every optimal partition (i.e. a partition with the minimum criterion function). Therefore, no conflict will be caused by those new constraints. First, we prove that it is NP-hard to obtain EML or ECL constraints. Then, a heuristic method named Limit Crossing is proposed to achieve a fraction of those new constraints. In practice, this new method can always retrieve a lot of EML or ECL constraints. To evaluate the effectiveness of Limit Crossing, multi-partition based and distance based methods are also proposed in this paper to generate faux elite pairwise constraints. Extensive experiments have been conducted on both UCI and synthetic data sets using a semi-supervised clustering algorithm named COP-KMedoids. Experimental results demonstrate that COP-KMedoids under EML and ECL constraints generated by Limit Crossing can outperform those under either faux constraints or no constraints. & 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Semi-supervised and Active Image Clustering with Pairwise Constraints from Humans

Title of dissertation: Semi-supervised and Active Image Clustering with Pairwise Constraints from Humans Arijit Biswas, Doctor of Philosophy, 2014 Dissertation directed by: Prof. David W. Jacobs Department of Computer Science University of Maryland, College Park Clustering images has been an interesting problem for computer vision and machine learning researchers for many years. However as the ...

متن کامل

A Semi - supervised Text Clustering Algorithm Based on Pairwise Constraints ★

In this paper, an active learning method which can effectively select pairwise constraints during clustering procedure was presented. A novel semi-supervised text clustering algorithm was proposed, which employed an effective pairwise constraints selection method. As the samples on the fuzzy boundary are far away from the cluster center in the clustering procedure, they can be easily divided in...

متن کامل

Active Semi-Supervision for Pairwise Constrained Clustering

Semi-supervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of must-link and cannotlink constraints between pairs of examples. This paper presents a pairwise constrained clustering framework and a new method for actively selecting informative pairwise constraints to get improved clustering performance. The clust...

متن کامل

Hierarchical Pairwise Data

Partitioning a data set and extracting hidden structure arises in diierent application areas of pattern recognition, data analysis and image processing. We formulate data clustering for data characterized by pairwise dissimilarity values as an assignment problem with an objective function to be minimized. An extension to tree{structured clustering is proposed which allows a hierarchical groupin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2013